Ceramide synthesis correlates with the posttranscriptional regulation of the sterol-regulatory element-binding protein.
نویسندگان
چکیده
OBJECTIVE Sterol-regulatory element-binding proteins (SREBPs) regulate transcription of genes of lipid metabolism. Ceramide decreases transcriptionally active SREBP levels independently of intracellular cholesterol levels. Mechanisms of the ceramide-mediated decrease of SREBP levels were investigated. METHODS AND RESULTS Experiments were performed in Chinese hamster ovary cells. Inhibition of ceramide synthesis with myriocin, cycloserine, or fumonisin decreases levels of transcriptionally active SREBP and reduces SRE-mediated gene transcription. When ceramide synthesis is increased through exogenous sphingosine or inhibition of sphingosine kinase, SRE-mediated gene transcription is increased. The important role of ceramide synthesis in SRE-mediated gene transcription is confirmed in LY-B cells that do not synthesize ceramide de novo. LY-B cells fail to increase SRE-mediated gene transcription in sterol depletion. CONCLUSIONS Ceramide synthesis correlates with the generation of transcriptionally active SREBP and SRE-mediated gene transcription. Inhibition of ceramide synthesis decreases levels of transcriptionally active SREBP and SRE-mediated gene transcription. It is hypothesized that the process of ongoing ceramide synthesis contributes to the physiological processing of SREBP, perhaps affecting ER-to-Golgi trafficking. Taken together, modification of ceramide synthesis could be a novel target for drug development in the pharmacologic modification of SRE-dependent pathways.
منابع مشابه
بررسی ارتباط میزان بیان ژن پروتئین متصل شونده به عنصر تنظیمی استرول با پروفایل لیپیدی
Background and purpose: Atherosclerosis is a form of arteriosclerosis that is one of the main causes of death in the world. In coronary artery disease, the vessels are stenosed due to lipid aggregation and inflammation. Epidemiologic studies have shown that in addition to demographic factors such as age and sex, blood pressure, smoking, obesity diabetes and genetics are also associa...
متن کاملRegulation of sterol synthesis in eukaryotes.
Cholesterol is an essential component of mammalian cell membranes and is required for proper membrane permeability, fluidity, organelle identity, and protein function. Cells maintain sterol homeostasis by multiple feedback controls that act through transcriptional and posttranscriptional mechanisms. The membrane-bound transcription factor sterol regulatory element binding protein (SREBP) is the...
متن کاملParallel regulation of sterol regulatory element binding protein-2 and the enzymes of cholesterol and fatty acid synthesis but not ceramide synthesis in cultured human keratinocytes and murine epidermis.
After permeability barrier perturbation there is an increase in the mRNA levels for key enzymes necessary for lipid synthesis in the epidermis. The mechanism(s) responsible for this regulation is unknown. Sterol regulatory element binding proteins-1a, 1c, and -2 (SREBPs) control the transcription of enzymes required for cholesterol and fatty acid t synthesis in response to modulations of sterol...
متن کاملSterol regulatory element-binding proteins (SREBPs): transcriptional regulators of lipid synthetic genes.
Roles of sterol regulatory element-binding proteins (SREBPs) have been established as lipid synthetic transcription factors especially for cholesterol and fatty acid synthesis. SREBPs have unique characteristics. Firstly, they are membrane-bound proteins and the N-terminal active portions enter nucleus to activate their target genes after proteolytic cleavage, which requires sterol-sensing mole...
متن کامل3-hydroxy-3-methylglutaryl coenzyme a reductase inhibition prevents endothelial NO synthase downregulation by atherogenic levels of native LDLs: balance between transcriptional and posttranscriptional regulation.
Atherogenic levels of native low density lipoproteins (nLDLs) decrease the bioavailability of endothelium-derived NO and downregulate endothelial NO synthase (eNOS) expression in cultured human endothelial cells. Here, we show that simvastatin, a 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor, within the therapeutic range (0.01 to 1 micromol/L) prevented the downregulation of eNOS mR...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Arteriosclerosis, thrombosis, and vascular biology
دوره 24 5 شماره
صفحات -
تاریخ انتشار 2004